Abstract
Impurity doping of ultrasmall nanoscale (usn) silicon (Si) currently used in ultralarge scale integration (ULSI) faces serious miniaturization challenges below the 14 nm technology node such as dopant out-diffusion and inactivation by clustering in Si-based field-effect transistors (FETs). Moreover, self-purification and massively increased ionization energy cause doping to fail for Si nano-crystals (NCs) showing quantum confinement. To introduce electron- (n-) or hole- (p-) type conductivity, usn-Si may not require doping, but an energy shift of electronic states with respect to the vacuum energy between different regions of usn-Si. We show in theory and experiment that usn-Si can experience a considerable energy offset of electronic states by embedding it in silicon dioxide (SiO2) or silicon nitride (Si3N4), whereby a few monolayers (MLs) of SiO2 or Si3N4 are enough to achieve these offsets. Our findings present an alternative to conventional impurity doping for ULSI, provide new opportunities for ultralow power electronics and open a whole new vista on the introduction of p- and n-type conductivity into usn-Si.
Subject
Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献