Origin and Quantitative Description of the NESSIAS Effect at Si Nanostructures

Author:

König Dirk1ORCID,Frentzen Michael2ORCID,Hiller Daniel3ORCID,Wilck Noël2ORCID,Santo Giovanni Di4ORCID,Petaccia Luca4ORCID,Píš Igor5ORCID,Bondino Federica5ORCID,Magnano Elena56ORCID,Mayer Joachim7ORCID,Knoch Joachim2ORCID,Smith Sean C.18ORCID

Affiliation:

1. Integrated Materials Design Lab (IMDL) The Australian National University Canberra ACT 2601 Australia

2. Institute of Semiconductor Electronics (IHT) RWTH Aachen University 52074 Aachen Germany

3. Institute of Applied Physics (IAP) Technische Universität Bergakademie Freiberg 09599 Freiberg Germany

4. Elettra Sincrotrone Trieste Strada Statale 14 km 163.5 Trieste 34149 Italy

5. IOM‐CNR, Instituto Officina dei Materiali Area Science Park S.S. 14 km 163.5 Trieste 34149 Italy

6. Department of Physics University of Johannesburg PO Box 524 Auckland Park 2006 South Africa

7. Ernst‐Ruska Centre for Microscopy and Spectroscopy with Electrons RWTH Aachen University 52074 Aachen Germany

8. Department of Applied Mathematics Research School of Physics and Engineering, The Australian National University Canberra ACT 2601 Australia

Abstract

AbstractThe electronic structure of SiO2‐ versus Si3N4‐coated low nanoscale intrinsic silicon (Si) shifts away from versus toward the vacuum level Evac, originating from the Nanoscale Electronic Structure Shift Induced by Anions at Surfaces (NESSIAS). Using the quantum chemical properties of the elements involved to explain NESSIAS, an analytic parameter Λ is derived to predict the highest occupied energy level of Si nanocrystals (NCs) as verified by various hybrid‐density functional calculations and NC sizes. First experimental data of Si nanowells (NWells) embedded in SiO2 versus Si3N4 were measured by X‐ray absorption spectroscopy in total fluorescence yield mode (XAS‐TFY), complemented by ultraviolet photoelectron spectroscopy (UPS), characterizing their conduction band and valence band edge energies EC and EV, respectively. Scanning the valence band sub‐structure over NWell thickness yields an accurate estimate of EV shifted purely by spatial confinement, and thus the actual EV shift due to NESSIAS. Offsets of ΔEC = 0.56 eV and ΔEV = 0.89 eV were obtained for 1.9 nm thick NWells in SiO2 versus Si3N4, demonstrating an intrinsic Si type II homojunction. This p/n junction generated by NESSIAS eliminates any deteriorating impact of impurity dopants, offering undoped ultrasmall Si electronic devices with much reduced physical gate lengths and CMOS‐compatible materials.

Funder

RWTH Aachen University

Helmholtz Association

Deutsche Forschungsgemeinschaft

Elettra-Sincrotrone Trieste

Publisher

Wiley

Reference61 articles.

1. Intrinsic ultrasmall nanoscale silicon turns n-/p-type with SiO2/Si3N4-coating

2. Electronic Structure Shift of Deeply Nanoscale Silicon by SiO2 versus Si3N4 Embedding as an Alternative to Impurity Doping

3. Turning Low-Nanoscale Intrinsic Silicon Highly Electron-Conductive by SiO2 Coating

4. It is interesting to note in this context that current VLSI technology nodes do not reflect the physical gate length. We have a planar MOSFETmodelshrunken to a size where itwould performas the fin‐FET of the respective technology node providing animpliedgate length as a node index (J.‐P. Collinge Tyndall National Institute Cork Ireland; private communication 2016).

5. Quantum computers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3