Naphthalonitriles featuring efficient emission in solution and in the solid state

Author:

Thulaseedharan Nair Sailaja SidharthORCID,Maisuls IvánORCID,Kösters Jutta,Hepp AlexanderORCID,Faust Andreas,Voskuhl JensORCID,Strassert Cristian AORCID

Abstract

In this work, a series of γ-substituted diphenylnaphthalonitriles were synthesized and characterized. They show efficient emission in solution and in the aggregated state and their environment responsiveness is based on having variable substituents at the para-position of the two phenyl moieties. The excited state properties were fully investigated in tetrahydrofuran (THF) solutions and in THF/H2O mixtures. The size of the aggregates in aqueous media were measured by dynamic light scattering (DLS). The steady-state and time-resolved photoluminescence spectroscopy studies revealed that all the molecules show intense fluorescence both in solution and in the aggregated state. In THF solutions, a blue emission was observed for the unsubstituted (H), methyl- (Me) and tert-butyl- (t-Bu) substituted γ-diphenylnaphthalonitriles, which can be attributed to a weak π-donor capability of these groups. On the other hand, the methoxy- (OMe), methylsulfanyl- (SMe) and dimethylamino- (NMe2) substituted compounds exhibit a progressive red-shift in emission compared to H, Me and t-Bu due to a growing π-electron donating capability. Interestingly, upon aggregation in water-containing media, H, Me and t-Bu show a slight red-shift of the emission and a blue-shift is observed for OMe, SMe and NMe2. The crystal structure of Me allowed a detailed discussion of the structure–property relationship. Clearly, N-containing substituents such as NMe2 possess more electron-donating ability than the S-based moieties such as SMe. Moreover, it was found that NMe2 showed higher luminescence quantum yields (ΦF) in comparison to SMe, indicating that N-substituted groups could enhance the fluorescence intensity. Therefore, the π-donor nature of the substituents on the phenyl ring constitutes the main parameter that influences the photophysical properties, such as excited state lifetimes and photoluminescence quantum yields. Hence, a series of highly luminescent materials from deep blue to red emission depending on substitution and environment is reported with potential applications in sensing, bioimaging and optoelectronics.

Publisher

Beilstein Institut

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3