Microwave-assisted synthesis of biologically relevant steroidal 17-exo-pyrazol-5'-ones from a norpregnene precursor by a side-chain elongation/heterocyclization sequence

Author:

Mótyán GergőORCID,Mérai László,Kiss Márton AttilaORCID,Schelz Zsuzsanna,Sinka Izabella,Zupkó István,Frank ÉvaORCID

Abstract

Multistep syntheses of novel 17β-pyrazol-5'-ones in the Δ5-androstane series were efficiently carried out from pregnenolone acetate. A steroidal 17-carboxylic acid was first synthesized as a norpregnene precursor by the bromoform reaction and subsequent acetylation. Its CDI-activated acylimidazole derivative was then converted to a β-ketoester containing a two carbon atom-elongated side chain than that of the starting material. A Knorr cyclization of the bifunctional 1,3-dicarbonyl compound with hydrazine and its monosubstituted derivatives in AcOH under microwave heating conditions led to the regioselective formation of 17-exo-heterocycles in good to excellent yields. The suppression of an acid-catalyzed thermal decarboxylation of the β-ketoester and thus a significant improvement in the yield of the desired heterocyclic products could be achieved by the preliminary liberation of the arylhydrazines from their hydrochloride salts in EtOH in the presence of NaOAc. The reaction rates were found to depend on the electronic character of the substituent present in the phenylhydrazine applied. The antiproliferative activities of the structurally related steroidal pyrazol-5'-ones and their deacetylated analogs were screened on three human adherent breast cancer cell lines (MCF7, T47D and MDA-MB-231): the microculture tetrazolium assay revealed that some of the presented derivatives exerted cell growth inhibitory effects on some of these cell lines comparable to those of the reference compound, cisplatin.

Publisher

Beilstein Institut

Subject

Organic Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3