Author:
Christoforides Elias,Papaioannou Andreas,Bethanis Kostas
Abstract
The role of beta-cyclodextrin (β-CD) in cholesterol removal primarily from mammalian cells and secondly from dairy products has been studied thoroughly in recent years. Although the physicochemical characterization of the inclusion compound of cholesterol in β-CD has been achieved by various methods, no crystal structure has been determined so far. We report here the crystal structure of the inclusion compound of cholesterol in β-CD. The inclusion complex crystallizes in the triclinic space group P1 forming head-to-head dimers which are stacked along the c-axis. One well-defined cholesterol molecule ‘axially’ encapsulated inside the β-CD dimer and 22 water molecules that stabilize the complexes in the crystalline state comprise the asymmetric unit of the structure. The dimers are arranged in an intermediate (IM) channel packing mode in the crystal. Moreover, MD simulations, at 300 and 340 K, based on the crystallographically determined coordinates of the complex show that the formed cholesterol/β-CD inclusion compound remains very stable in aqueous solution at both temperatures.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献