Endothelial Nitric Oxide Synthase Haplotypes Are Associated with Features of Metabolic Syndrome

Author:

González-Sánchez José L1,Martínez-Larrad María T1,Sáez María E1,Zabena Carina1,Martínez-Calatrava María J1,Serrano-Ríos Manuel

Affiliation:

1. Department of Internal Medicine II, Hospital Clínico San Carlos, Madrid, Spain

Abstract

Abstract Background: The metabolic syndrome, a cluster of several metabolic disorders, is increasingly being recognized as a risk factor for cardiovascular disease. Endothelium-derived nitric oxide facilitates skeletal muscle glucose uptake, and data from animal models indicate that endothelial nitric oxide synthase (eNOS) gene–null mice present with a phenotype of insulin resistance, hypertension, and hypertriglyceridemia, much like that observed in humans with metabolic syndrome. We used haplotype tagging single nucleotide polymorphisms (htSNPs) to investigate the role of genetic variation in the eNOS gene (NOS3) in metabolic syndrome in humans. Methods: We recruited 738 unrelated persons from a cross-sectional population-based epidemiological survey in the province of Segovia in Central Spain (Castille). Metabolic syndrome was defined according to the recently modified National Cholesterol Education Program Adult Treatment Panel III guidelines. Results: Haplotype analysis showed a statistically significant association between some NOS3 gene variants and features of metabolic syndrome. Relative to the most common haplotype, 121, the haplotype 212 was associated with an increased odds ratio (OR) for metabolic syndrome [OR = 1.81, 95% confidence interval (CI) 1.15–2.84], and for decreased HDL-cholesterol concentrations (OR 1.52, 95% CI 1.01–2.29), and with increased mean values for the homeostasis model assessment of insulin resistance (P = 0.043), and triglycerides (P = 0.026). Conclusions: Our results suggest that genetic variation at the eNOS locus is associated with features of metabolic syndrome, and might represent a new genetic susceptibility component for insulin resistance, hypertriglyceridemia, and low HDL-cholesterol concentrations.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3