Quantification by Liquid Chromatography Tandem Mass Spectrometry of Mycophenolic Acid and Its Phenol and Acyl Glucuronide Metabolites

Author:

Brandhorst Gunnar,Streit Frank1,Goetze Sandra1,Oellerich Michael1,Armstrong Victor William1

Affiliation:

1. Universitätsklinikum Göttingen, Abteilung Klinische Chemie/Zentrallabor, 37075 Göttingen, Germany

Abstract

Abstract Background: We developed and validated a rapid and reliable liquid chromatography–tandem mass spectrometry (LC-MS/MS) procedure for the quantification of mycophenolic acid (MPA) and its phenol glucuronide (MPAG) and acyl glucuronide (AcMPAG) metabolites. Methods: We performed protein precipitation on all samples (calibrators, quality controls, and patient samples) and then subjected them to online solid-phase extraction followed by reversed-phase liquid chromatography for 4.0 min. The carboxybutoxy ether of MPA (MPAC) was used as the internal calibrator. The separated compounds (MPA, MPAG, AcMPAG, and MPAC) were detected by electrospray ionization-coupled MS/MS. We compared LC-MS/MS results with results for the same samples obtained with a validated HPLC procedure with an ultraviolet detector. Results: Comparison with the validated HPLC-ultraviolet procedure demonstrated good agreement. The Passing–Bablok regression was y = 0.968x − 0.058 for MPA, y = 1.08x − 1.697 for MPAG, and y = 0.952x + 0.076 for AcMPAG. Assay imprecision showed a CV <10% at 3 concentrations for each compound. The lower limit of quantification was 0.1 mg/L for MPA, 1.0 mg/L for MPAG, and 0.05 mg/L for AcMPAG. The mean analytical recovery was 90%–110%. The assay was linear from 0.1 to 50 mg/L for MPA (r = 0.9987), from 1 to 500 mg/L for MPAG (r = 0.9999), and from 0.05 to 10 mg/L for AcMPAG (r = 0.9988). Quantification of the compounds was not affected by in-source fragmentation or ion suppression. Conclusion: The LC-MS/MS assay described here is valid and reliable for the quantification of total MPA, MPAG, and AcMPAG in serum.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3