Sequencing of Genomic DNA by Combined Amplification and Cycle Sequencing Reaction

Author:

Murphy Kathleen M1,Berg Karin D11,Eshleman James R11

Affiliation:

1. Departments of Pathology and Oncology, Johns Hopkins Medical Institutions, Baltimore, MD

Abstract

Abstract Background: Despite considerable advances, DNA sequencing has remained somewhat time-consuming and expensive, requiring three separate steps to generate sequencing products from a template: amplification of the target sequence; purification of the amplified product; and a sequencing reaction. Our aim was to develop a method to routinely combine PCR amplification and cycle sequencing into one single reaction, enabling direct sequencing of genomic DNA. Methods: Combined amplification and sequencing reactions were set up with Big Dye™ sequencing reagents (Applied Biosystems) supplemented with variable amounts of forward and reverse primers, deoxynucleotide triphosphates (dNTPs), and input DNA. Reactions were thermal-cycled for 35 or 45 cycles. Products were analyzed by capillary electrophoresis to detect sequencing products. Results: Reactions using two oligonucleotide primers at a ratio of 5:1 (500 nM primer 1 and 100 nM primer 2), 125 μM supplemental dNTPs, and 35–45 thermal cycles optimally supported combined amplification and cycle sequencing reactions. Our results suggest that these reactions are dominated by PCR during early cycles and convert to cycle sequencing in later cycles. We used this technique for a variety of sequencing applications, including the identification of germline mutations/polymorphisms in the Factor V and BRCA2 genes, sequencing of tumor DNA to identify somatic mutations in the DPC4/SMADH4 and FLT3 genes, and sequencing of 16S ribosomal DNA for bacterial speciation. Conclusions: PCR amplification and cycle sequencing can be combined into a single reaction using the conditions described. This technique allows direct sequencing of genomic DNA, decreasing the cost and labor involved in gene sequencing.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3