Diagnostic Probes for Bacillus anthracis Spores Selected from a Landscape Phage Library

Author:

Brigati Jennifer1,Williams David D2,Sorokulova Iryna B1,Nanduri Viswaprakash3,Chen I-Hsuan1,Turnbough Charles L2,Petrenko Valery A1

Affiliation:

1. Departments of Pathobiology and

2. Department of Microbiology, University of Alabama at Birmingham, Birmingham AL

3. Anatomy, Physiology, and Pharmacology, Auburn University, College of Veterinary Medicine, Auburn, AL

Abstract

AbstractBackground: Recent use of Bacillus anthracis spores as a bioweapon has highlighted the need for a continuous monitoring system. Current monitoring systems rely on antibody-derived probes, which are not hardy enough to withstand long-term use under extreme conditions. We describe new, phage-derived probes that can be used as robust substitutes for antibodies.Methods: From a landscape phage library with random octapeptides displayed on all copies of the major phage coat protein of the phage fd-tet, we selected clones that bound to spores of B. anthracis (Sterne strain). ELISA, micropanning, and coprecipitation assays were used to evaluate the specificity and selectivity with which these phage bound to B. anthracis spores.Results: Peptides on the selected clones directed binding of the phage to B. anthracis spores. Most clones exhibited little or no binding to spores of distantly related Bacillus species, but some binding was observed with spores of closely related species. Our most specific spore-binding phage displayed a peptide EPRLSPHS (several thousand peptides per phage) and bound 3.5- to 70-fold better to spores of B. anthracis Sterne than to spores of other Bacillus species.Conclusions: The selected phage probes bound preferentially to B. anthracis Sterne spores compared with other Bacillus species. These phage could possibly be further developed into highly specific and robust probes suitable for long-term use in continuous monitoring devices and biosorbents.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3