Adaptive Bayesian Analysis of Serum Creatinine as a Marker for Drug-Induced Renal Impairment in an Early-Phase Clinical Trial

Author:

Sottas Pierre-Edouard1,Kapke Gordon F2,Leroux Jean-Marc1

Affiliation:

1. Covance Central Laboratory Services, Meyrin, Switzerland

2. Covance Central Laboratory Services, Indianapolis, IN

Abstract

BACKGROUND A concern with using creatinine for the identification of drug-induced renal impairment is that small changes in serum creatinine (SCr) that frequently are perceived as measurement bias or imprecision translate into important changes in the glomerular filtration rate. Important drug-generated changes in creatinine are difficult to detect because they are frequently observed within the reference interval. The design of a crossover drug protocol is an opportunity to use study participants as their own control to identify these small but important changes. METHODS Twenty individuals participating in a phase I clinical trial were evaluated for SCr changes beyond those expected for biological variation according to individual Z scores derived from an adaptive Bayesian model. After 2 screening tests, participants were administered either drug (n = 11) or placebo (n = 9) during the first dosing interval. A washout period followed, and drug was then administered to the group that initially received placebo, and vice versa (10 visits total per participant). RESULTS Although all creatinine values fell within the reference interval, 8 participants individually showed increased concentrations (Z scores >2.33). These 8 participants were confirmed at unblinding to have received the drug in the identified dosing period, with 1 exception. CONCLUSIONS The ability to identify a drug effect on an individual-participant basis in early-phase studies permits drug developers to recognize issues early in development and rapidly engage in risk–benefit analysis. These results suggest that SCr monitoring is able to detect early kidney dysfunction when individual-based reference intervals are used.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

Reference10 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3