A comparison of methods to generate adaptive reference ranges in longitudinal monitoring

Author:

Roshan DavoodORCID,Ferguson John,Pedlar Charles R.,Simpkin Andrew,Wyns William,Sullivan Frank,Newell John

Abstract

In a clinical setting, biomarkers are typically measured and evaluated as biological indicators of a physiological state. Population based reference ranges, known as ‘static’ or ‘normal’ reference ranges, are often used as a tool to classify a biomarker value for an individual as typical or atypical. However, these ranges may not be informative to a particular individual when considering changes in a biomarker over time since each observation is assessed in isolation and against the same reference limits. To allow early detection of unusual physiological changes, adaptation of static reference ranges is required that incorporates within-individual variability of biomarkers arising from longitudinal monitoring in addition to between-individual variability. To overcome this issue, methods for generating individualised reference ranges are proposed within a Bayesian framework which adapts successively whenever a new measurement is recorded for the individual. This new Bayesian approach also allows the within-individual variability to differ for each individual, compared to other less flexible approaches. However, the Bayesian approach usually comes with a high computational cost, especially for individuals with a large number of observations, that diminishes its applicability. This difficulty suggests that a computational approximation may be required. Thus, methods for generating individualised adaptive ranges by the use of a time-efficient approximate Expectation-Maximisation (EM) algorithm will be presented which relies only on a few sufficient statistics at the individual level.

Funder

Science Foundation Ireland

Irish Health Research Board

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference31 articles.

1. Reference range: Which statistical intervals to use?;W Liu;Statistical Methods in Medical Research,2020

2. Bayesian detection of abnormal values in longitudinal biomarkers with an application to T/E ratio;PE Sottas;Biostatistics,2006

3. Z-scores-based methods and their application to biological monitoring: an example in professional soccer players;G Saulière;Biostatistics,2017

4. A third generation approach to detect erythropoietin abuse in athletes;K Sharpe;Haematologica,2006

5. Statistical classification of abnormal blood profiles in athletes;PE Sottas;The International Journal of Biostatistics,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3