Affiliation:
1. Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Biomedical Research Center, Baltimore, MD
Abstract
BACKGROUND
Δ9-Tetrahydrocannabinol (THC) is the most frequently observed illicit drug in investigations of accidents and driving under the influence of drugs. THC-glucuronide has been suggested as a marker of recent cannabis use, but there are no blood data following controlled THC administration to test this hypothesis. Furthermore, there are no studies directly examining whole-blood cannabinoid pharmacokinetics, although this matrix is often the only available specimen.
METHODS
Participants (9 men, 1 woman) resided on a closed research unit and smoked one 6.8% THC cannabis cigarette ad libitum. We quantified THC, 11-hydroxy-THC (11-OH-THC), 11-nor-9-carboxy-THC (THCCOOH), cannabidiol (CBD), cannabinol (CBN), THC-glucuronide and THCCOOH-glucuronide directly in whole blood and plasma by liquid chromatography/tandem mass spectrometry within 24 h of collection to obviate stability issues.
RESULTS
Median whole blood (plasma) observed maximum concentrations (Cmax) were 50 (76), 6.4 (10), 41 (67), 1.3 (2.0), 2.4 (3.6), 89 (190), and 0.7 (1.4) μg/L 0.25 h after starting smoking for THC, 11-OH- THC, THCCOOH, CBD, CBN, and THCCOOH-glucuronide, respectively, and 0.5 h for THC-glucuronide. At observed Cmax, whole-blood (plasma) detection rates were 60% (80%), 80% (90%), and 50% (80%) for CBD, CBN, and THC-glucuronide, respectively. CBD and CBN were not detectable after 1 h in either matrix (LOQ 1.0 μg/L).
CONCLUSIONS
Human whole-blood cannabinoid data following cannabis smoking will assist whole blood and plasma cannabinoid interpretation, while furthering identification of recent cannabis intake.
Funder
Intramural Research Program
National Institute on Drug Abuse
NIH
Publisher
Oxford University Press (OUP)
Subject
Biochemistry, medical,Clinical Biochemistry
Cited by
152 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献