Analbuminemia Produced by a Novel Splicing Mutation

Author:

Dolcini Lorenzo1,Caridi Gianluca2,Dagnino Monica23,Sala Alberto1,Gökçe Selim4,Sökücü Semra1,Campagnoli Monica1,Galliano Monica1,Minchiotti Lorenzo1

Affiliation:

1. Department of Biochemistry, University of Pavia, Pavia, Italy

2. Laboratory on Pathophysiology of Uremia and Renal Child Foundation,

3. Istituto Giannina Gaslini IRCCS, Genova, Italy

4. Department of Pediatric Gastroenterology, Hepatology and Nutrition, Istanbul School of Medicine, Istanbul University

Abstract

AbstractAnalbuminemia is a rare autosomal recessive disorder manifested by the absence or severe reduction of circulating human serum albumin in homozygous or compound heterozygous individuals. It is an allelic heterogeneous defect, caused by a variety of mutations within the albumin gene. The analbuminemic condition was diagnosed in a Turkish female infant on the basis of low albumin concentration (∼9.0 g/L). The albumin gene was screened by single-strand conformation polymorphism and heteroduplex analysis and submitted to direct sequencing. The proband was found to be homozygous for a T→C transition at nucleotide 13381, the 2nd base of intron 11. The effect of this previously unreported mutation, which inactivates the strongly conserved GT dinucleotide at the 5′ splice site consensus sequence of intron 11, was evaluated by examining the cDNA obtained by reverse transcription-PCR from the albumin mRNA extracted from the proband leukocytes. This analysis revealed that the mutation, named Bartin for the geographical origin of the patient’s family, results in the skipping of exon 11. The subsequent frameshift within exon 12 originates a premature stop codon located 5 codons downstream at position 411. The predicted translation product would consist of 410 amino acids. This novel extensive cDNA alteration is responsible for the analbuminemic trait.

Funder

FIRB

Ministero dell’ Istruzione, della Università e della Ricerca

Renal Child Foundation

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3