First estimation of the scale of canonical 5’ splice site GT>GC mutations generating wild-type transcripts and their medical genetic implications

Author:

Lin Jin-Huan,Tang Xin-Ying,Boulling Arnaud,Zou Wen-Bin,Masson Emmanuelle,Fichou Yann,Raud Loann,Tertre Marlène Le,Deng Shun-Jiang,Berlivet Isabelle,Ka Chandran,Mort Matthew,Hayden Matthew,Gac Gerald Le,Cooper David N.,Li Zhao-Shen,Férec Claude,Liao Zhuan,Chen Jian-MinORCID

Abstract

ABSTRACTIt has long been known that canonical 5’ splice site (5’SS) GT>GC mutations may be compatible with normal splicing. However, to date, the true scale of canonical 5’SS GT>GC mutations generating wild-type transcripts, both in the context of the frequency of such mutations and the level of wild-type transcripts generated from the mutation alleles, remain unknown. Herein, combining data derived from a meta-analysis of 45 informative disease-causing 5’SS GT>GC mutations (from 42 genes) and a cell culture-based full-length gene splicing assay of 103 5’SS GT>GC mutations (from 30 genes), we estimate that ∼15-18% of the canonical GT 5’SSs are capable of generating between 1 and 84% normal transcripts as a consequence of the substitution of GT by GC. We further demonstrate that the canonical 5’SSs whose substitutions of GT by GC generated normal transcripts show stronger complementarity to the 5’ end of U1 snRNA than those sites whose substitutions of GT by GC did not lead to the generation of normal transcripts. We also observed a correlation between the generation of wild-type transcripts and a milder than expected clinical phenotype but found that none of the available splicing prediction tools were able to accurately predict the functional impact of 5’SS GT>GC mutations. Our findings imply that 5’SS GT>GC mutations may not invariably cause human disease but should also help to improve our understanding of the evolutionary processes that accompanied GT>GC subtype switching of U2-type introns in mammals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3