Automated Detection of Inaccurate and Imprecise Transitions in Peptide Quantification by Multiple Reaction Monitoring Mass Spectrometry

Author:

Abbatiello Susan E1,Mani D R1,Keshishian Hasmik1,Carr Steven A1

Affiliation:

1. Broad Institute of MIT and Harvard, Cambridge, MA

Abstract

Abstract Background: Multiple reaction monitoring mass spectrometry (MRM-MS) of peptides with stable isotope–labeled internal standards (SISs) is increasingly being used to develop quantitative assays for proteins in complex biological matrices. These assays can be highly precise and quantitative, but the frequent occurrence of interferences requires that MRM-MS data be manually reviewed, a time-intensive process subject to human error. We developed an algorithm that identifies inaccurate transition data based on the presence of interfering signal or inconsistent recovery among replicate samples. Methods: The algorithm objectively evaluates MRM-MS data with 2 orthogonal approaches. First, it compares the relative product ion intensities of the analyte peptide to those of the SIS peptide and uses a t-test to determine if they are significantly different. A CV is then calculated from the ratio of the analyte peak area to the SIS peak area from the sample replicates. Results: The algorithm identified problematic transitions and achieved accuracies of 94%–100%, with a sensitivity and specificity of 83%–100% for correct identification of errant transitions. The algorithm was robust when challenged with multiple types of interferences and problematic transitions. Conclusions: This algorithm for automated detection of inaccurate and imprecise transitions (AuDIT) in MRM-MS data reduces the time required for manual and subjective inspection of data, improves the overall accuracy of data analysis, and is easily implemented into the standard data-analysis work flow. AuDIT currently works with results exported from MRM-MS data-processing software packages and may be implemented as an analysis tool within such software.

Funder

National Cancer Institute

National Heart Lung and Blood Institute

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3