Specific Magnetic Bead–Based Capture of Genomic DNA from Clinical Samples: Application to the Detection of Group B Streptococci in Vaginal/Anal Swabs

Author:

Parham Nicholas J,Picard François J,Peytavi Régis,Gagnon Martin,Seyrig Grégoire,Gagné Pier-Ann,Boissinot Maurice,Bergeron Michel G

Abstract

Abstract Background: Group B streptococci (GBS) are a leading cause of sepsis and meningitis in newborns. We previously developed a rapid diagnostic system for GBS detection from vaginal/anal samples obtained from pregnant women during delivery. To facilitate the adaptation of this method for point-of-care testing, we have developed a specific and efficient GBS DNA capture method that is compatible with both PCR and nonamplification detection technologies. Methods: Superparamagnetic beads were functionalized with oligonucleotide capture probes of different lengths and used to capture GBS genomic DNA (gDNA). A rapid extraction procedure was used to provide DNA from GBS cultures or vaginal/anal samples with added GBS. Hybridization reactions consisting of functionalized beads and target DNA in 30 μL of hybridization buffer were performed for 1 h at room temperature, followed by washing and resuspension in water. Captured DNA was then detected using quantitative PCR. Results: A 25-mer capture probe allowed detection of 1000 genome copies of purified GBS DNA. The ability to detect GBS was improved by use of a 50-mer (100 copies) and a 70-mer capture probe (10 copies). Detection of approximately 1250 CFU/mL was achieved for diluted GBS broth culture and for vaginal/anal swab samples with added GBS. Conclusion: Oligonucleotide-functionalized superparamagnetic microbeads efficiently capture GBS gDNA from both bacterial cultures and vaginal/anal samples with added GBS. Efficiency of gDNA capture increases with oligonucleotide length. This technology could be combined with sample preparation and detection technologies in a microfluidic system to allow point-of-care testing for GBS.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3