Clonal Hematopoiesis in Late-Stage Non–Small-Cell Lung Cancer and Its Impact on Targeted Panel Next-Generation Sequencing

Author:

Yaung Stephanie J.1ORCID,Fuhlbrück Frederike2ORCID,Peterson Maureen3,Zou Wei3,Palma John F.1ORCID,Patil Namrata S.3,Jiang Yuqiu1

Affiliation:

1. Roche Sequencing Solutions, Pleasanton, CA

2. Roche Sequencing Solutions, Potsdam, Germany

3. Genentech, South San Francisco, CA

Abstract

PURPOSE Somatic mutations derived from the expansion of clonal populations of blood cells (clonal hematopoiesis of indeterminate potential, or CHIP) may be detected in sequencing of cell-free DNA (cfDNA) samples. We evaluated the potential implications of CHIP in targeted sequencing of plasma samples using matched peripheral blood mononuclear cells (PBMCs) from patients with lung cancer to identify potential CHIP-associated mutations. MATERIALS AND METHODS A total of 332 plasma and corresponding PBMC samples were collected predose, cycle 1 day 1 (C1D1), from the randomized, phase III study (OAK) comparing atezolizumab versus docetaxel in previously treated patients with non–small-cell lung cancer (NSCLC). The samples were analyzed with the AVENIO ctDNA Surveillance Kit (for research use only; not for use in diagnostic procedures), a 198-kb next-generation sequencing panel targeting cancer-related genes. CHIP variants were assessed by analyzing both plasma and PBMC sequencing data. RESULTS A range of zero to eight CHIP variants (median = one) was detected per cfDNA sample. Most of these variants were not in the Database of Single Nucleotide Polymorphisms (dbSNP). The number of CHIP variants was positively associated with age, and TP53 was the most frequently mutated gene. Furthermore, the allele frequency was less variable over time for CHIP variants than for tumor-derived variants. CONCLUSION CHIP-derived mutations are present in late-stage NSCLC. However, not all plasma samples had CHIP mutations detected with targeted panel sequencing. Paired PBMC sequencing analysis may be needed to remove CHIP variants for comprehensive genomic profiling using plasma samples to identify true somatic mutations.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3