Polygenic Pharmacogenomic Markers as Predictors of Toxicity Phenotypes in the Treatment of Acute Lymphoblastic Leukemia: A Single-Center Study

Author:

Larkin Trisha12,Kashif Reema1,Elsayed Abdelrahman H.3,Greer Beate4ORCID,Mangrola Karna1,Rafiee Roya3,Nguyen Nam3ORCID,Shastri Vivek3,Horn Biljana1ORCID,Lamba Jatinder K.3ORCID

Affiliation:

1. Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL

2. St Joseph's Children's Hospital/BayCare Medical Group, Tampa, FL

3. Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL

4. Pediatrics Division, UF Health Cancer Center, University of Florida, Gainesville, FL

Abstract

PURPOSE Acute lymphoblastic leukemia (ALL) is the most prevalent cause of childhood cancer and requires a long course of therapy consisting of three primary phases with interval intensification blocks. Although these phases are necessary to achieve remission, the primary chemotherapeutic agents have potentially serious toxicities, which may lead to delays or discontinuations of therapy. The purpose of this study was to perform a comprehensive pharmacogenomic evaluation of common antileukemic agents and develop a polygenic toxicity risk score predictive of the most common toxicities observed during ALL treatment. METHODS This cross-sectional study included 75 patients with pediatric ALL treated between 2012 and 2020 at the University of Florida. Toxicity data were collected within 100 days of initiation of therapy using CTCAE v4.0 for toxicity grading. For pharmacogenomic evaluation, single-nucleotide polymorphisms (SNPs) and genes were selected from previous reports or PharmGKB database. 116 unique SNPs were evaluated for incidence of various toxicities. A multivariable multi-SNP modeling for up to 3-SNP combination was performed to develop a polygenic toxicity risk score of prognostic value. RESULTS We identified several SNPs predictive of toxicity phenotypes in univariate analysis. Further multivariable SNP-SNP combination analysis suggest that susceptibility to chemotherapy-induced toxicities is likely multigenic in nature. For 3-SNPscore models, patients with high scores experienced increased risk of GI ( P = 2.07E-05, 3 SNPs: TYMS-rs151264360/FPGS-rs1544105/GSTM1-GSTM5-rs3754446), neurologic ( P = .0005, 3 SNPs: DCTD-rs6829021/SLC28A3-rs17343066/CTPS1-rs12067645), endocrine ( P = 4.77E-08, 3 SNPs: AKR1C3-rs1937840/TYMS-rs2853539/CTH-rs648743), and heme toxicities ( P = .053, 3 SNPs: CYP3A5-rs776746/ABCB1-rs4148737/CTPS1-rs12067645). CONCLUSION Our results imply that instead of a single-SNP approach, SNP-SNP combinations in multiple genes in drug pathways increases the robustness of prediction of toxicity. These results further provide promising SNP models that can help establish clinically relevant biomarkers allowing for greater individualization of cancer therapy to maximize efficacy and minimize toxicity for each patient.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3