Personalized Network Modeling of the Pan-Cancer Patient and Cell Line Interactome

Author:

Bhattacharyya Rupam1,Ha Min Jin2,Liu Qingzhi1,Akbani Rehan3,Liang Han34,Baladandayuthapani Veerabhadran1

Affiliation:

1. Department of Biostatistics, University of Michigan, Ann Arbor, MI

2. Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX

3. Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX

4. Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX

Abstract

PURPOSE Personalized network inference on diverse clinical and in vitro model systems across cancer types can be used to delineate specific regulatory mechanisms, uncover drug targets and pathways, and develop individualized predictive models in cancer. METHODS We developed TransPRECISE (personalized cancer-specific integrated network estimation model), a multiscale Bayesian network modeling framework, to analyze the pan-cancer patient and cell line interactome to identify differential and conserved intrapathway activities, to globally assess cell lines as representative models for patients, and to develop drug sensitivity prediction models. We assessed pan-cancer pathway activities for a large cohort of patient samples (> 7,700) from the Cancer Proteome Atlas across ≥ 30 tumor types, a set of 640 cancer cell lines from the MD Anderson Cell Lines Project spanning 16 lineages, and ≥ 250 cell lines’ response to > 400 drugs. RESULTS TransPRECISE captured differential and conserved proteomic network topologies and pathway circuitry between multiple patient and cell line lineages: ovarian and kidney cancers shared high levels of connectivity in the hormone receptor and receptor tyrosine kinase pathways, respectively, between the two model systems. Our tumor stratification approach found distinct clinical subtypes of the patients represented by different sets of cell lines: patients with head and neck tumors were classified into two different subtypes that are represented by head and neck and esophagus cell lines and had different prognostic patterns (456 v 654 days of median overall survival; P = .02). High predictive accuracy was observed for drug sensitivities in cell lines across multiple drugs (median area under the receiver operating characteristic curve > 0.8) using Bayesian additive regression tree models with TransPRECISE pathway scores. CONCLUSION Our study provides a generalizable analytic framework to assess the translational potential of preclinical model systems and to guide pathway-based personalized medical decision making, integrating genomic and molecular data across model systems.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3