A unified mediation analysis framework for integrative cancer proteogenomics with clinical outcomes

Author:

Huang Licai1,Long James P,Irajizad Ehsan1,Doecke James D2,Do Kim-Anh1,Ha Min Jin3ORCID

Affiliation:

1. Department of Biostatistics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA

2. CSIRO, Royal Brisbane and Women’s Hospital , Brisbane, Australia

3. Department of Health Informatics and Biostatistics, Graduate School of Public Health, Yonsei University , Seoul, South Korea

Abstract

Abstract Motivation Multilevel molecular profiling of tumors and the integrative analysis with clinical outcomes have enabled a deeper characterization of cancer treatment. Mediation analysis has emerged as a promising statistical tool to identify and quantify the intermediate mechanisms by which a gene affects an outcome. However, existing methods lack a unified approach to handle various types of outcome variables, making them unsuitable for high-throughput molecular profiling data with highly interconnected variables. Results We develop a general mediation analysis framework for proteogenomic data that include multiple exposures, multivariate mediators on various scales of effects as appropriate for continuous, binary and survival outcomes. Our estimation method avoids imposing constraints on model parameters such as the rare disease assumption, while accommodating multiple exposures and high-dimensional mediators. We compare our approach to other methods in extensive simulation studies at a range of sample sizes, disease prevalence and number of false mediators. Using kidney renal clear cell carcinoma proteogenomic data, we identify genes that are mediated by proteins and the underlying mechanisms on various survival outcomes that capture short- and long-term disease-specific clinical characteristics. Availability and implementation Software is made available in an R package (https://github.com/longjp/mediateR). Supplementary information Supplementary data are available at Bioinformatics online.

Funder

NIH

NCI

National Research Foundation of Korea

NRF

Yonsei University Graduate School of Public Health

National Institutes of Health

SPORE

CCTS

CPRIT

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3