HistoQC: An Open-Source Quality Control Tool for Digital Pathology Slides

Author:

Janowczyk Andrew1,Zuo Ren1,Gilmore Hannah2,Feldman Michael3,Madabhushi Anant14

Affiliation:

1. Case Western Reserve University, Cleveland, OH

2. University Hospitals Cleveland Medical Center, Cleveland, OH

3. University of Pennsylvania Perelman School of Medicine, Philadelphia, PA

4. Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, OH

Abstract

PURPOSE Digital pathology (DP), referring to the digitization of tissue slides, is beginning to change the landscape of clinical diagnostic workflows and has engendered active research within the area of computational pathology. One of the challenges in DP is the presence of artefacts and batch effects, unintentionally introduced during both routine slide preparation (eg, staining, tissue folding) and digitization (eg, blurriness, variations in contrast and hue). Manual review of glass and digital slides is laborious, qualitative, and subject to intra- and inter-reader variability. Therefore, there is a critical need for a reproducible automated approach of precisely localizing artefacts to identify slides that need to be reproduced or regions that should be avoided during computational analysis. METHODS Here we present HistoQC, a tool for rapidly performing quality control to not only identify and delineate artefacts but also discover cohort-level outliers (eg, slides stained darker or lighter than others in the cohort). This open-source tool employs a combination of image metrics (eg, color histograms, brightness, contrast), features (eg, edge detectors), and supervised classifiers (eg, pen detection) to identify artefact-free regions on digitized slides. These regions and metrics are presented to the user via an interactive graphical user interface, facilitating artefact detection through real-time visualization and filtering. These same metrics afford users the opportunity to explicitly define acceptable tolerances for their workflows. RESULTS The output of HistoQC on 450 slides from The Cancer Genome Atlas was reviewed by two pathologists and found to be suitable for computational analysis more than 95% of the time. CONCLUSION These results suggest that HistoQC could provide an automated, quantifiable, quality control process for identifying artefacts and measuring slide quality, in turn helping to improve both the repeatability and robustness of DP workflows.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3