Affiliation:
1. From the Division of Pharmacokinetics and Drug Therapy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden, and Department of Medical Oncology, Erasmus MC–Daniel den Hoed, Rotterdam, the Netherlands.
Abstract
PURPOSE: To build population pharmacokinetic (PK) models for irinotecan (CPT-11) and its currently identified metabolites. PATIENTS AND METHODS: Seventy cancer patients (24 women and 46 men) received 90-minute intravenous infusions of CPT-11 in the dose range of 175 to 300 mg/m2. The PK models were developed to describe plasma concentration profiles of the lactone and carboxylate forms of CPT-11 and 7-ethyl-10-hydroxycamptothecin (SN-38) and the total forms of SN-38 glucuronide (SN-38G), 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]-carbonyloxycamptothecin (APC), and 7-ethyl-10-[4-amino-1-piperidino]-carbonyloxycamptothecin (NPC) by using NONMEM. RESULTS: The interconversion between the lactone and carboxylate forms of CPT-11 was relatively rapid, with an equilibration half-life of 14 minutes in the central compartment and hydrolysis occurring at a rate five times faster than lactonization. The same interconversion also occurred in peripheral compartments. CPT-11 lactone had extensive tissue distribution (steady-state volume of distribution [Vss], 445 L) compared with the carboxylate form (Vss, 78 L, excluding peripherally formed CPT-11 carboxylate). Clearance (CL) was higher for the lactone form (74.3 L/h) compared with the carboxylate form (12.3 L/h). During metabolite data modeling, goodness of fit indicated a preference of SN-38 and NPC to be formed out of the lactone form of CPT-11, whereas APC could be modeled best by presuming formation from CPT-11 carboxylate. The interconversion between SN-38 lactone and carboxylate was slower than that of CPT-11, with the lactone form dominating at equilibrium. The CLs for SN-38 lactone and carboxylate were similar, but the lactone form had more extensive tissue distribution. CONCLUSION: Plasma data of CPT-11 and metabolites could be adequately described by this compartmental model, which may be useful in predicting the time courses, including interindividual variability, of all characterized substances after intravenous administrations of CPT-11.
Publisher
American Society of Clinical Oncology (ASCO)
Reference27 articles.
1. Irinotecan
2. Kawato Y, Aonuma M, Hirota Y, et al: Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res 51: 4187,1991-4191,
3. Identification and kinetics of a ?-glucuronide metabolite of SN-38 in human plasma after administration of the camptothecin derivative irinotecan
4. Glucuronidation of SN-38, the Active Metabolite of Irinotecan, by Human Hepatic Microsomes
5. Rivory LP, Riou JF, Haaz MC, et al: Identification and properties of a major plasma metabolite of irinotecan (CPT-11) isolated from the plasma of patients. Cancer Res 56: 3689,1996-3694,
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献