Machine Learning Frameworks to Predict Neoadjuvant Chemotherapy Response in Breast Cancer Using Clinical and Pathological Features

Author:

Meti Nicholas12,Saednia Khadijeh3,Lagree Andrew4,Tabbarah Sami4,Mohebpour Majid4,Kiss Alex5,Lu Fang-I6,Slodkowska Elzbieta6,Gandhi Sonal17,Jerzak Katarzyna Joanna17,Fleshner Lauren4,Law Ethan4,Sadeghi-Naini Ali234,Tran William T.248

Affiliation:

1. Division of Medical Oncology, Department of Medicine, University of Toronto, ON, Canada

2. Temerty Centre for AI Research and Education in Medicine, University of Toronto, ON, Toronto, Canada

3. Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, Canada

4. Department of Radiation Oncology, Sunnybrook Health Sciences Center, Toronto, ON, Canada

5. Institute of Clinical Evaluative Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada

6. Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON, Canada

7. Division of Medical Oncology, Sunnybrook Health Sciences Center, Toronto, ON, Canada

8. Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada

Abstract

PURPOSE Neoadjuvant chemotherapy (NAC) is used to treat locally advanced breast cancer (LABC) and high-risk early breast cancer (BC). Pathological complete response (pCR) has prognostic value depending on BC subtype. Rates of pCR, however, can be variable. Predictive modeling is desirable to help identify patients early who may have suboptimal NAC response. Here, we test and compare the predictive performances of machine learning (ML) prediction models to a standard statistical model, using clinical and pathological data. METHODS Clinical and pathological variables were collected in 431 patients, including tumor size, patient demographics, histological characteristics, molecular status, and staging information. A standard multivariable logistic regression (MLR) was developed and compared with five ML models: k-nearest neighbor classifier, random forest (RF) classifier, naive Bayes algorithm, support vector machine, and multilayer perceptron model. Model performances were measured using a receiver operating characteristic (ROC) analysis and statistically compared. RESULTS MLR predictors of NAC response included: estrogen receptor (ER) status, human epidermal growth factor-2 (HER2) status, tumor size, and Nottingham grade. The strongest MLR predictors of pCR included HER2+ versus HER2− BC (odds ratio [OR], 0.13; 95% CI, 0.07 to 0.23; P < .001) and Nottingham grade G3 versus G1-2 (G1-2: OR, 0.36; 95% CI, 0.20 to 0.65; P < .001). The area under the curve (AUC) for the MLR was AUC = 0.64. Among the various ML models, an RF classifier performed best, with an AUC = 0.88, sensitivity of 70.7%, and specificity of 84.6%, and included the following variables: menopausal status, ER status, HER2 status, Nottingham grade, tumor size, nodal status, and presence of inflammatory BC. CONCLUSION Modeling performances varied between standard versus ML classification methods. RF ML classifiers demonstrated the best predictive performance among all models.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3