Natural Language Processing Accurately Differentiates Cancer Symptom Information in Electronic Health Record Narratives

Author:

Albashayreh Alaa1ORCID,Bandyopadhyay Anindita2ORCID,Zeinali Nahid3,Zhang Min4,Fan Weiguo2ORCID,Gilbertson White Stephanie1ORCID

Affiliation:

1. College of Nursing, University of Iowa, Iowa City, IA

2. Tippie College of Business, University of Iowa, Iowa City, IA

3. Graduate College, University of Iowa, Iowa City, IA

4. School of Economics and Management, Communication University of China, Beijing, China

Abstract

PURPOSE Identifying cancer symptoms in electronic health record (EHR) narratives is feasible with natural language processing (NLP). However, more efficient NLP systems are needed to detect various symptoms and distinguish observed symptoms from negated symptoms and medication-related side effects. We evaluated the accuracy of NLP in (1) detecting 14 symptom groups (ie, pain, fatigue, swelling, depressed mood, anxiety, nausea/vomiting, pruritus, headache, shortness of breath, constipation, numbness/tingling, decreased appetite, impaired memory, disturbed sleep) and (2) distinguishing observed symptoms in EHR narratives among patients with cancer. METHODS We extracted 902,508 notes for 11,784 unique patients diagnosed with cancer and developed a gold standard corpus of 1,112 notes labeled for presence or absence of 14 symptom groups. We trained an embeddings-augmented NLP system integrating human and machine intelligence and conventional machine learning algorithms. NLP metrics were calculated on a gold standard corpus subset for testing. RESULTS The interannotator agreement for labeling the gold standard corpus was excellent at 92%. The embeddings-augmented NLP model achieved the best performance (F1 score = 0.877). The highest NLP accuracy was observed in pruritus (F1 score = 0.937) while the lowest accuracy was in swelling (F1 score = 0.787). After classifying the entire data set with embeddings-augmented NLP, we found that 41% of the notes included symptom documentation. Pain was the most documented symptom (29% of all notes) while impaired memory was the least documented (0.7% of all notes). CONCLUSION We illustrated the feasibility of detecting 14 symptom groups in EHR narratives and showed that an embeddings-augmented NLP system outperforms conventional machine learning algorithms in detecting symptom information and differentiating observed symptoms from negated symptoms and medication-related side effects.

Publisher

American Society of Clinical Oncology (ASCO)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3