Automated Renal Cancer Grading Using Nuclear Pleomorphic Patterns

Author:

Holdbrook Daniel Aitor1,Singh Malay1,Choudhury Yukti1,Kalaw Emarene Mationg1,Koh Valerie1,Tan Hui Shan1,Kanesvaran Ravindran1,Tan Puay Hoon1,Peng John Yuen Shyi1,Tan Min-Han1,Lee Hwee Kuan1

Affiliation:

1. Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for...

Abstract

Purpose Nuclear pleomorphic patterns are essential for Fuhrman grading of clear cell renal cell carcinoma (ccRCC). Manual observation of renal histopathologic slides may lead to subjective and inconsistent assessment between pathologists. An automated, image-based system that classifies ccRCC slides by quantifying nuclear pleomorphic patterns in an objective and consistent interpretable fashion can aid pathologists in histopathologic assessment. Methods In the current study, histopathologic tissue slides of 59 patients with ccRCC who underwent surgery at Singapore General Hospital were assembled retrospectively. An automated image classification pipeline detects and analyzes prominent nucleoli in ccRCC images to classify them as either low (Fuhrman grade 1 and 2) or high (Fuhrman grade 3 and 4). The pipeline uses machine learning and image pixel intensity–based feature extraction techniques for nuclear analysis. We trained classification systems that concurrently analyze different permutations of multiple prominent nucleoli image patches. Results Given the parameters for feature combination and extraction, we present experimental results across various configurations for the classification of a given ccRCC histopathologic image. We also demonstrate that the image score used by the pipeline, termed fraction value, is correlated ( R = 0.59) with an existing multigene assay–based scoring system that has previously been demonstrated to be a strong indicator of prognosis in patients with ccRCC. Conclusion The current method provides an objective and fully automated way by which to process pathologic slides. The correlation study with a multigene assay–based scoring system also allows us to provide quantitative interpretation for already established nuclear pleomorphic patterns in ccRCC. This method can be extended to other cancers whose corresponding grading systems use nuclear pattern information.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3