Artificial Intelligence in Urooncology: What We Have and What We Expect

Author:

Froń Anita1,Semianiuk Alina1,Lazuk Uladzimir1,Ptaszkowski Kuba2ORCID,Siennicka Agnieszka3ORCID,Lemiński Artur4ORCID,Krajewski Wojciech1,Szydełko Tomasz1,Małkiewicz Bartosz1ORCID

Affiliation:

1. Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland

2. Department of Physiotherapy, Wroclaw Medical University, 50-368 Wroclaw, Poland

3. Department of Physiology and Pathophysiology, Wroclaw Medical University, 50-556 Wroclaw, Poland

4. Department of Urology and Urological Oncology, Pomeranian Medical University, 70-111 Szczecin, Poland

Abstract

Introduction: Artificial intelligence is transforming healthcare by driving innovation, automation, and optimization across various fields of medicine. The aim of this study was to determine whether artificial intelligence (AI) techniques can be used in the diagnosis, treatment planning, and monitoring of urological cancers. Methodology: We conducted a thorough search for original and review articles published until 31 May 2022 in the PUBMED/Scopus database. Our search included several terms related to AI and urooncology. Articles were selected with the consensus of all authors. Results: Several types of AI can be used in the medical field. The most common forms of AI are machine learning (ML), deep learning (DL), neural networks (NNs), natural language processing (NLP) systems, and computer vision. AI can improve various domains related to the management of urologic cancers, such as imaging, grading, and nodal staging. AI can also help identify appropriate diagnoses, treatment options, and even biomarkers. In the majority of these instances, AI is as accurate as or sometimes even superior to medical doctors. Conclusions: AI techniques have the potential to revolutionize the diagnosis, treatment, and monitoring of urologic cancers. The use of AI in urooncology care is expected to increase in the future, leading to improved patient outcomes and better overall management of these tumors.

Funder

Wroclaw Medical University

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3