Implementing a Machine Learning Strategy to Predict Pathologic Response in Patients With Soft Tissue Sarcomas Treated With Neoadjuvant Chemotherapy

Author:

Crombé Amandine123ORCID,Cousin Sophie4,Spalato-Ceruso Mariella4ORCID,Le Loarer François35ORCID,Toulmonde Maud4,Michot Audrey36,Kind Michèle1ORCID,Stoeckle Eberhard6,Italiano Antoine34ORCID

Affiliation:

1. Department of Oncological Imaging, Institut Bergonié, Bordeaux, France

2. Mathematical Modeling for Oncology Team, Inria Bordeaux Sud-Ouest, Talence, France

3. Bordeaux University, Bordeaux, France

4. Early Phase Trials and Sarcoma Units, Department of Medical Oncology, Institut Bergonié, Bordeaux, France

5. Department of Pathology, Institut Bergonié, Bordeaux, France

6. Department of Oncologic Surgery, Institut Bergonié, Bordeaux, France

Abstract

PURPOSE Neoadjuvant chemotherapy (NAC) has been increasingly used in patients with locally advanced high-risk soft tissue sarcomas in the past decade, but definition and prognostic impact of a good histologic response (GHR) are lacking. Our aim was to investigate which histologic feature from the post-NAC surgical specimen independently correlated with metastatic relapse-free survival (MFS) in combination with clinical, radiologic, and pathologic features using a machine learning approach. METHODS This retrospective study included 175 consecutive patients (median age: 59 years, 75 women) with resectable disease, treated with anthracycline-based NAC between 1989 and 2015 in our sarcoma reference center, and with quantitative histopathologic analysis of the surgical specimen. The outcome of interest was the MFS. A multimodel, multivariate survival analysis was used to define GHR. The added prognostic value of GHR was investigated through the comparisons with the standard model (including histologic grade, size, and depth) and SARCULATOR nomogram using concordance indices (c-index) and Monte-Carlo cross-validation. RESULTS Seventy-two patients (72 of 175, 41.1%) had a metastatic relapse. Stepwise Cox regression, random survival forests, and least absolute shrinkage and selection operator–penalized Cox regression all converged toward the same definition for GHR, ie, < 5% stainable tumor cells. The five-year MFS probability was 1 (95% CI, 1 to 1) in patients with GHR versus 0.73 (95% CI, 0.65 to 0.81) in patients without GHR (log-rank P = .0122). The final prognostic model incorporating the GHR was significantly better than the standard model and SARCULATOR (average c-index in testing sets = 0.72 [95% CI, 0.61 to 0.82] v 0.57 [95% CI, 0.44 to 0.70] and 0.54 [95% CI, 0.45 to 0.64], respectively; P = .0414 and .0091). CONCLUSION Histologic response to NAC improves the prediction of MFS in patients with soft tissue sarcoma and represents a possible end point in future studies exploring innovative regimens in the neoadjuvant setting.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3