Applications of Artificial Intelligence in Pediatric Oncology: A Systematic Review

Author:

Ramesh Siddhi1,Chokkara Sukarn1ORCID,Shen Timothy1ORCID,Major Ajay2ORCID,Volchenboum Samuel L.3ORCID,Mayampurath Anoop3ORCID,Applebaum Mark A.3ORCID

Affiliation:

1. Pritzker School of Medicine, University of Chicago, Chicago, IL

2. Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL

3. Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL

Abstract

PURPOSE There is a need for an improved understanding of clinical and biologic risk factors in pediatric cancer to improve patient outcomes. Machine learning (ML) represents the application of computational inference from advanced statistical methods that can be applied to increasing amount of data available for study in pediatric oncology. The goal of this systematic review was to systematically characterize the state of ML in pediatric oncology and highlight advances and opportunities in the field. METHODS We conducted a systematic review of the Embase, Scopus, and MEDLINE databases for applications of ML in pediatric oncology. Query results from all three databases were aggregated and duplicate studies were removed. RESULTS A total of 42 unique articles that examined the applications of ML in pediatric oncology met inclusion criteria for review. We identified 20 studies of CNS tumors, 13 of solid tumors, and nine of leukemia. ML tasks included classification, prediction of treatment response, and dose optimization with a variety of methods being used including neural network, k-nearest neighbor, random forest, naive Bayes, and support vector machines. Strengths of the identified studies included matching or outperforming physician comparators via automated analysis and predicting therapeutic response. Common limitations included significant heterogeneity in reporting standards, clinical applicability, small sample sizes, and missing external validation cohorts. CONCLUSION We identified areas where ML can enhance clinical care in ways that may not otherwise be achievable. Although ML promises enormous potential in improving diagnostics, decision making, and monitoring for children with cancer, the field remains in early stages and future work will be aided by standards and guidelines to ensure rigorous methodologic design and maximizing clinical utility.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3