M&M: An RNA-seq based Pan-Cancer Classifier for Pediatric Tumors

Author:

Wallis Fleur S.A.ORCID,Baker-Hernandez John L.,van Tuil Marc,van Hamersveld Claudia,Koudijs Marco J.,Verwiel Eugène T.P.ORCID,Janse AlexORCID,Hiemcke-Jiwa Laura S.ORCID,de Krijger Ronald R.ORCID,Kranendonk Mariëtte E.G.ORCID,Vermeulen Marijn A.ORCID,Wesseling Pieter,Flucke Uta E.ORCID,de Haas ValérieORCID,Luesink Maaike,Hoving Eelco W.,Vormoor H. JosefORCID,van Noesel Max M.ORCID,Hehir-Kwa Jayne Y.ORCID,Tops Bastiaan B.J.ORCID,Kemmeren PatrickORCID,Kester Lennart A.ORCID

Abstract

With many rare tumor types, acquiring the correct diagnosis is a challenging but crucial process in pediatric oncology. Here, we present M&M, a pan-cancer ensemble-based machine learning algorithm tailored towards inclusion of rare tumor types. The RNA-seq based algorithm can classify 52 different tumor types (precision99%, recall80%), plus the underlying 96 tumor subtypes (precision96%, recall70%). For low-confidence classifications, a comparable precision is achieved when including the three highest-scoring labels. M&M’s pan-cancer setup allows for easy clinical implementation, requiring only one classifier for all incoming diagnostic samples, including samples from different tumor stages and treatment statuses. Simultaneously, its performance is comparable to existing tumor- and tissue-specific classifiers. The introduction of an extensive pan-cancer classifier in diagnostics has the potential to increase diagnostic accuracy for many pediatric cancer cases, thereby contributing towards optimal patient survival and quality of life.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3