Practical Aspects of Implementing and Applying Health Care Cloud Computing Services and Informatics to Cancer Clinical Trial Data

Author:

Ronquillo Jay G.12ORCID,Lester William T.34ORCID

Affiliation:

1. Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD

2. Office of Data Science Strategy, National Institutes of Health, Bethesda, MD

3. Laboratory of Computer Science, Massachusetts General Hospital, Boston, MA

4. Harvard Medical School, Boston, MA

Abstract

PURPOSE Cloud computing has led to dramatic growth in the volume, variety, and velocity of cancer data. However, cloud platforms and services present new challenges for cancer research, particularly in understanding the practical tradeoffs between cloud performance, cost, and complexity. The goal of this study was to describe the practical challenges when using a cloud-based service to improve the cancer clinical trial matching process. METHODS We collected information for all interventional cancer clinical trials from ClinicalTrials.gov and used the Google Cloud Healthcare Natural Language Application Programming Interface (API) to analyze clinical trial Title and Eligibility Criteria text. An informatics pipeline leveraging interoperability standards summarized the distribution of cancer clinical trials, genes, laboratory tests, and medications extracted from cloud-based entity analysis. RESULTS There were a total of 38,851 cancer-related clinical trials found in this study, with the distribution of cancer categories extracted from Title text significantly different than in ClinicalTrials.gov ( P < .001). Cloud-based entity analysis of clinical trial criteria identified a total of 949 genes, 1,782 laboratory tests, 2,086 medications, and 4,902 National Cancer Institute Thesaurus terms, with estimated detection accuracies ranging from 12.8% to 89.9%. A total of 77,702 API calls processed an estimated 167,179 text records, which took a total of 1,979 processing-minutes (33.0 processing-hours), or approximately 1.5 seconds per API call. CONCLUSION Current general-purpose cloud health care tools—like the Google service in this study—should not be used for automated clinical trial matching unless they can perform effective extraction and classification of the clinical, genetic, and medication concepts central to precision oncology research. A strong understanding of the practical aspects of cloud computing will help researchers effectively navigate the vast data ecosystems in cancer research.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3