Nanopore sequencing data analysis using Microsoft Azure cloud computing service

Author:

Truong LinhORCID,Ayora FelipeORCID,D’Orsogna LloydORCID,Martinez Patricia,De Santis Dianne

Abstract

Genetic information provides insights into the exome, genome, epigenetics and structural organisation of the organism. Given the enormous amount of genetic information, scientists are able to perform mammoth tasks to improve the standard of health care such as determining genetic influences on outcome of allogeneic transplantation. Cloud based computing has increasingly become a key choice for many scientists, engineers and institutions as it offers on-demand network access and users can conveniently rent rather than buy all required computing resources. With the positive advancements of cloud computing and nanopore sequencing data output, we were motivated to develop an automated and scalable analysis pipeline utilizing cloud infrastructure in Microsoft Azure to accelerate HLA genotyping service and improve the efficiency of the workflow at lower cost. In this study, we describe (i) the selection process for suitable virtual machine sizes for computing resources to balance between the best performance versus cost effectiveness; (ii) the building of Docker containers to include all tools in the cloud computational environment; (iii) the comparison of HLA genotype concordance between the in-house manual method and the automated cloud-based pipeline to assess data accuracy. In conclusion, the Microsoft Azure cloud based data analysis pipeline was shown to meet all the key imperatives for performance, cost, usability, simplicity and accuracy. Importantly, the pipeline allows for the on-going maintenance and testing of version changes before implementation. This pipeline is suitable for the data analysis from MinION sequencing platform and could be adopted for other data analysis application processes.

Funder

Microsoft

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference8 articles.

1. Accumulating computational resource usage of genomic data analysis workflow to optimize cloud computing instance selection.;T Ohta;GigaScience

2. Nanopore sequencing: Review of potential applications in functional genomics.;N Kono;Develop Growth Differ,2019

3. Cloud computing for genomic data analysis and collaboration;B Langmead;Nature Reviews: Genetics,2018

4. A novel multiplexed 11 locus HLA full gene amplification assay using next generation sequencing;L Truong;HLA,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3