Deep Learning for Cancer Symptoms Monitoring on the Basis of Electronic Health Record Unstructured Clinical Notes

Author:

Lindvall Charlotta123ORCID,Deng Chih-Ying1ORCID,Agaronnik Nicole D.12,Kwok Anne1ORCID,Samineni Soujanya1ORCID,Umeton Renato1ORCID,Mackie-Jenkins Warren13,Kehl Kenneth L.123ORCID,Tulsky James A.123ORCID,Enzinger Andrea C.123ORCID

Affiliation:

1. Dana-Farber Cancer Institute, Boston, MA

2. Harvard Medical School, Boston, MA

3. Brigham and Women's Hospital, Boston, MA

Abstract

PURPOSE Symptoms are vital outcomes for cancer clinical trials, observational research, and population-level surveillance. Patient-reported outcomes (PROs) are valuable for monitoring symptoms, yet there are many challenges to collecting PROs at scale. We sought to develop, test, and externally validate a deep learning model to extract symptoms from unstructured clinical notes in the electronic health record. METHODS We randomly selected 1,225 outpatient progress notes from among patients treated at the Dana-Farber Cancer Institute between January 2016 and December 2019 and used 1,125 notes as our training/validation data set and 100 notes as our test data set. We evaluated the performance of 10 deep learning models for detecting 80 symptoms included in the National Cancer Institute's Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) framework. Model performance as compared with manual chart abstraction was assessed using standard metrics, and the highest performer was externally validated on a sample of 100 physician notes from a different clinical context. RESULTS In our training and test data sets, 75 of the 80 candidate symptoms were identified. The ELECTRA-small model had the highest performance for symptom identification at the token level (ie, at the individual symptom level), with an F1 of 0.87 and a processing time of 3.95 seconds per note. For the 10 most common symptoms in the test data set, the F1 score ranged from 0.98 for anxious to 0.86 for fatigue. For external validation of the same symptoms, the note-level performance ranged from F1 = 0.97 for diarrhea and dizziness to F1 = 0.73 for swelling. CONCLUSION Training a deep learning model to identify a wide range of electronic health record–documented symptoms relevant to cancer care is feasible. This approach could be used at the health system scale to complement to electronic PROs.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3