Improving Adjuvant Liver-Directed Treatment Recommendations for Unresectable Hepatocellular Carcinoma: An Artificial Intelligence–Based Decision-Making Tool

Author:

Mo Allen1ORCID,Velten Christian12ORCID,Jiang Julie M.1,Tang Justin1,Ohri Nitin1,Kalnicki Shalom1,Mirhaji Parsa34ORCID,Nemoto Kei4,Aasman Boudewijn4,Garg Madhur1,Guha Chandan12,Brodin N. Patrik12,Kabarriti Rafi1ORCID

Affiliation:

1. Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY

2. Institute for Onco-Physics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY

3. Department of Systems & Computational Biology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY

4. Center for Health Data Innovation, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY

Abstract

PURPOSE Liver-directed therapy after transarterial chemoembolization (TACE) can lead to improvement in survival for selected patients with unresectable hepatocellular carcinoma (HCC). However, there is uncertainty in the appropriate application and modality of therapy in current clinical practice guidelines. The aim of this study was to develop a proof-of-concept, machine learning (ML) model for treatment recommendation in patients previously treated with TACE and select patients who might benefit from additional treatment with combination stereotactic body radiotherapy (SBRT) or radiofrequency ablation (RFA). METHODS This retrospective observational study was based on data from an urban, academic hospital system selecting for patients diagnosed with stage I-III HCC from January 1, 2008, to December 31, 2018, treated with TACE, followed by adjuvant RFA, SBRT, or no additional liver-directed modality. A feedforward, ML ensemble model provided a treatment recommendation on the basis of pairwise assessments evaluating each potential treatment option and estimated benefit in survival. RESULTS Two hundred thirty-seven patients met inclusion criteria, of whom 54 (23%) and 49 (21%) received combination of TACE and SBRT or TACE and RFA, respectively. The ML model suggested a different consolidative modality in 32.7% of cases among patients who had previously received combination treatment. Patients treated in concordance with model recommendations had significant improvement in progression-free survival (hazard ratio 0.5; P = .007). The most important features for model prediction were cause of cirrhosis, stage of disease, and albumin-bilirubin grade (a measure of liver function). CONCLUSION In this proof-of-concept study, an ensemble ML model was able to provide treatment recommendations for HCC who had undergone prior TACE. Additional treatment in line with model recommendations was associated with significant improvement in progression-free survival, suggesting a potential benefit for ML-guided medical decision making.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3