The Mobile Robot Control in Obstacle Avoidance Using Fuzzy Logic Controller

Author:

Khairudin M.,Refalda R.,Yatmono S.,Pramono H. S.,Triatmaja A. K.,Shah A

Abstract

A very challenging problem in mobile robot systems is mostly in obstacle avoidance strategies. This study aims to describe how the obstacle avoidance system on mobile robots works. This system is designed automatically using fuzzy logic control (FLC) developed using Matlab to help the mobile robots to avoid a head-on collision. The FLC designs were simulated on the mobile robot system. The simulation was conducted by comparing FLC performance to the proportional integral derivative (PID) controller. The simulation results indicate that FLC works better with lower settling time performance. To validate the results, FLC was used in a mobile robot system. It shows that FLC can control the velocity by braking or accelerating according to the sensor input installed in front of the mobile robot. The FLC control system functions as ultrasonic sensor input or a distance sensor. The input voltage was simulated with the potentiometer, whereas the output was shown by the velocity of DC motor. This study employed the simulation work in Simulink and Matlab, while the experimental work used laboratory scale of mobile robots. The results show that the velocity control of DC motors with FLC produces accurate data, so the robot could avoid the existing obstacles. The findings indicate that the simulation and the experimental work of FLC for mobile robot in obstacle avoidance are very close.

Publisher

Universitas Pendidikan Indonesia (UPI)

Subject

Space and Planetary Science,General Engineering,Geotechnical Engineering and Engineering Geology,General Chemical Engineering,General Computer Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3