Boosting the efficiency and stability of green InP quantum dot light emitting diodes by interface dipole modulation
Author:
Affiliation:
1. School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, Shanghai 200072, China
2. Key Laboratory of Advanced Display and System Application of Ministry of Education, Shanghai University, Shanghai 200072, China
Abstract
Funder
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
Publisher
Royal Society of Chemistry (RSC)
Subject
Materials Chemistry,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2022/TC/D2TC01522F
Reference47 articles.
1. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility
2. Development of InP Quantum Dot-Based Light-Emitting Diodes
3. Highly efficient, all-solution-processed, flexible white quantum dot light-emitting diodes
4. A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core–Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes
5. High‐Efficiency Green InP Quantum Dot‐Based Electroluminescent Device Comprising Thick‐Shell Quantum Dots
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Solution-Processed Thick Hole-Transport Layer for Reliable Quantum-Dot Light-Emitting Diodes Based on an Alternatingly Doped Structure;ACS Applied Materials & Interfaces;2024-08-01
2. Perovskite/organic tandem device to realize light detection and emission dual function;Chemical Engineering Journal;2024-06
3. Investigation of operation and degradation mechanisms in ZnTeSe blue quantum-dot light-emitting diodes by identifying recombination zone;Nano Research;2024-03-14
4. Passivating defects in ZnO electron transport layer for enhancing performance of red InP-based quantum dot light-emitting diodes;Materials Research Bulletin;2024-02
5. Surface functionalization of ZnO nanoparticles with sulfonate molecules as the electron transport layer in quantum dot light-emitting diodes;Journal of Materials Chemistry C;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3