Experimentally validated machine learning predictions of ultralow thermal conductivity for SnSe materials
Author:
Affiliation:
1. Department of Chemistry, University of Waterloo, 200 University Ave W, Waterloo, ON, Canada
2. Department of Chemistry, Hunter College, City University of New York, New York 10065, USA
Abstract
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Royal Society of Chemistry (RSC)
Subject
Materials Chemistry,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2023/TC/D3TC01450A
Reference59 articles.
1. Deep learning-based robust positioning for all-weather autonomous driving
2. Highly accurate protein structure prediction with AlphaFold
3. All-printed soft human-machine interface for robotic physicochemical sensing
4. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays
5. Innovative Materials Science via Machine Learning
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Interpretable Machine Learning Model on Thermal Conductivity Using Publicly Available Datasets and Our Internal Lab Dataset;Chemistry of Materials;2024-07-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3