Morphology-tunable synthesis of ZnO nanoforest and its photoelectrochemical performance
Author:
Affiliation:
1. Department of Chemistry
2. The University of Texas-Pan American
3. Edinburg, USA
4. Department of Mechanical Engineering
5. Materials Science and Engineering Department
6. The University of Texas at Arlington
7. Arlington, USA
Abstract
The morphology-controlled synthesis of ZnO nanoforests is achieved via a facile hydrothermal route based on the respective and synergistic influence of polyethylenimine (PEI) and ammonia. More importantly, the unique architectural characteristics endow the willow-like ZnO nanoforest with prominent photoelectrochemical water splitting performance, which leads to the realm of homogeneous ZnO nanostructures.
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science
Link
http://pubs.rsc.org/en/content/articlepdf/2014/NR/C4NR01146E
Reference60 articles.
1. Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis
2. Ordered Macroporous BiVO4Architectures with Controllable Dual Porosity for Efficient Solar Water Splitting
3. Rational Design of 3D Dendritic TiO2 Nanostructures with Favorable Architectures
4. Secondary Nucleation and Growth of ZnO
5. Identifying champion nanostructures for solar water-splitting
Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Heterostructured core-shell metal oxide-based nanobrushes for ultrafast UV photodetectors;Materials Science and Engineering: R: Reports;2024-09
2. Fabrication of rGO/BiOI photocathode and its catalytic performance in the degradation of 4-Fluoroaniline;Heliyon;2024-09
3. Controlled growth of 3D CdS-branched ZnO nanorod arrays for efficient solar driven photoelectrochemical water splitting;Solid State Sciences;2024-08
4. Nesting BiVO4 nanoislands in ZnO nanodendrites by two-step electrodeposition for efficient solar water splitting;Journal of Physics D: Applied Physics;2024-06-12
5. New electrocatalyst of Ni6MnO8@AB/PtNPs with efficient synergistic enhancement in electrochemical aptasensor for sensitive detection of neuron specific enolase;Microchemical Journal;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3