Nesting BiVO4 nanoislands in ZnO nanodendrites by two-step electrodeposition for efficient solar water splitting

Author:

Güler Ali Can,Antoš Jan,Masař Milan,Urbánek Michal,Machovský Michal,Dagupati Rajesh,Žitňan Michal,Velázquez José J,Galusek Dušan,Kuřitka IvoORCID

Abstract

Abstract Photoanodes with a large electrochemically active surface area, rapid charge transfer, and broadband light harvesting capacity are required to maximize the photoelectrochemical (PEC) water splitting performance. To address these features, we demonstrate that 3D hierarchal ZnO nanodendrites (NDs) can be sensitized with BiVO4 nanoislands by chemical and thermal treatments of electrodeposited Bi metal films. The flat band measurements and optical characterization suggested that the resulting heterojunction had type-II band alignment with a viable charge transfer from BiVO4 to ZnO NDs. In parallel, PL analysis revealed inhibition of the charge recombination rate by the electron transfer between BiVO4 and ZnO NDs. Upon AM 1.5 G illumination, BiVO4/ZnO NDs heterojunction yielded the highest photocurrent efficiency (0.15 mA·cm−2 at 1.2 V vs. NHE), which was attributed to its enhanced surface area (due to the presence of small dendrite branches), extended broadband light absorption extending from UV to visible light regions, and the most efficient interfacial charge transfer as proven by electrochemical impedance spectroscopy (EIS) studies. Besides, the incident photon-to-current conversion efficiency and applied bias photon-to-current efficiency tests confirmed an improved spectral photoresponse of the heterojunction based photoanode, particularly towards the visible light spectrum. The results outline a promising synthesis route for building heterojunctions between visible light active and wide band gap semiconductors for the use as a highly efficient photoanodes in a PEC cell.

Funder

H2020 Spreading Excellence and Widening Participation

Agentúra na Podporu Výskumu a Vývoja

Ministerstvo Školství, Mládeže a Tělovýchovy

CIT - ZK

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3