The ancient roots of nicotianamine: diversity, role, regulation and evolution of nicotianamine-like metallophores

Author:

Laffont Clémentine1ORCID,Arnoux Pascal1ORCID

Affiliation:

1. Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13108, France

Abstract

Abstract Nicotianamine (NA) is a metabolite synthesized by all plants, in which it is involved in the homeostasis of different micronutrients such as iron, nickel or zinc. In some plants it also serves as a precursor of phytosiderophores, which are used for extracellular iron scavenging. Previous studies have also established the presence of NA in filamentous fungi and some mosses, whereas an analogue of NA was inferred in an archaeon. More recently, opine-type metallophores with homology to NA were uncovered in bacteria, especially in human pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa or Yersinia pestis, synthesizing respectively staphylopine, pseudopaline and yersinopine. Here, we review the current state of knowledge regarding the discovery, biosynthesis, function and regulation of these metallophores. We also discuss the genomic environment of the cntL gene, which is homologous to the plant NA synthase (NAS) gene, and plays a central role in the synthesis of NA-like metallophores. This reveals a large diversity of biosynthetic, export and import pathways. Using sequence similarity networks, we uncovered that these metallophores are widespread in numerous bacteria thriving in very different environments, such as those living at the host–pathogen interface, but also in the soil. We additionally established a phylogeny of the NAS/cntL gene and, as a result, we propose that this gene is an ancient gene and NA, or its derivatives, is an ancient metallophore that played a prominent role in metal acquisition or metal resistance. Indeed, our phylogenetic analysis suggests an evolutionary model where the possibility to synthesize this metallophore was present early in the appearance of life, although it was later lost by most living microorganisms, unless facing metal starvation such as at the host–pathogen interface or in some soils. According to our model, NA then re-emerged as a central metabolite for metal homeostasis in fungi, mosses and all known higher plants.

Funder

Agence Nationale de la Recherche

Association Vaincre la Mucoviscidose

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3