Boosting the oxygen reduction reaction using high surface area graphitic-N dominant nitrogen doped carbon
Author:
Affiliation:
1. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
2. Transportation College, Nanning University, Nanning, 530200, P. R. China
Abstract
Funder
Shanghai Jiao Tong University
Liuzhou Science and Technology Project
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2023/TA/D3TA03934J
Reference58 articles.
1. High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies
2. Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction
3. Experimental identification of the active sites in pyrolyzed carbon-supported cobalt–polypyrrole–4-toluenesulfinic acid as electrocatalysts for oxygen reduction reaction
4. Transition metal carbides coupled with nitrogen-doped carbon as efficient and stable Bi-functional catalysts for oxygen reduction reaction and hydrogen evolution reaction
5. Revealing the oxygen Reduction/Evolution reaction activity origin of Carbon-Nitride-Related Single-Atom catalysts: Quantum chemistry in artificial intelligence
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. One single-atom Mn doping strategy enabling two functions of oxygen reduction reaction and pseudocapacitive performance;Energy Storage Materials;2024-08
2. Versatile metal-free carbon materials from ZIF-8: Insights into construction strategies, properties, applications and structure-activity relationships;Renewable and Sustainable Energy Reviews;2024-07
3. Preparation of N-B doped composite electrode for iron-chromium redox flow battery;Green Energy and Intelligent Transportation;2024-06
4. Recent advances of Fe single atom catalysts towards high-performance proton exchange membrane fuel cells;Nano Materials Science;2024-05
5. Unfolding the potassium storage mechanism of tin selenides;Chemical Engineering Journal;2024-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3