Carrier confinement effect-driven channel design and achievement of robust electrical/photostability and high mobility in oxide thin-film transistors
Author:
Affiliation:
1. School of Advanced Materials Science and Engineering
2. Sungkyunkwan University
3. Gyeonggi-do
4. Republic of Korea
Abstract
Carrier confinement effect-driven channel structures promoted stability under photo-bias stress condition, which was attributed increased recombinations events between photo-ionized oxygen vacancies and charged electrons due to the effective carrier confinement.
Funder
National Research Foundation of Korea
Publisher
Royal Society of Chemistry (RSC)
Subject
Materials Chemistry,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2016/TC/C5TC03766B
Reference45 articles.
1. Inorganic Semiconductors for Flexible Electronics
2. Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure
3. An ultra-lightweight design for imperceptible plastic electronics
4. Chemical and biological sensors based on organic thin-film transistors
5. Emerging N-Type Redox-Active Radical Polymer for a Totally Organic Polymer-Based Rechargeable Battery
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Effect of Source/Drain Electrode Materials on the Electrical Performance and Stability of Amorphous Indium-Tin-Zinc-Oxide FETs;IEEE Transactions on Electron Devices;2024-09
2. Control of Threshold Voltage in ZnO/Al2O3 Thin-Film Transistors through Al2O3 Growth Temperature;Electronics;2024-04-18
3. α‐TeO2 Oxide as Transparent p‐Type Semiconductor for Low Temperature Processed Thin Film Transistor Devices;Advanced Materials Interfaces;2024-03-11
4. Effect of Source/Drain Electrode Materials on the Electrical Performance and Stability of Amorphous Indium-Tin-Zinc-Oxide Fets;2024
5. Comparative Study of Atomic Layer Deposited Indium-Based Oxide Transistors with a Fermi Energy Level-Engineered Heterojunction Structure Channel through a Cation Combinatorial Approach;ACS Applied Materials & Interfaces;2022-04-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3