Machine learning-based q-RASPR modeling of power conversion efficiency of organic dyes in dye-sensitized solar cells
Author:
Affiliation:
1. Drug Theoretics and Chemoinformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, 188 Raja S C Mullick Road, 700032, Kolkata, India
Abstract
Funder
All India Council for Technical Education
Life Sciences Research Board
Publisher
Royal Society of Chemistry (RSC)
Subject
Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Link
http://pubs.rsc.org/en/content/articlepdf/2023/SE/D3SE00457K
Reference72 articles.
1. Sustainable building climate control with renewable energy sources using nonlinear model predictive control
2. A comprehensive study of renewable energy sources: Classifications, challenges and suggestions
3. Factors influencing the efficiency of photovoltaic system
4. Perovskites photovoltaic solar cells: An overview of current status
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. How to correctly develop q-RASAR models for predictive cheminformatics;Expert Opinion on Drug Discovery;2024-07-05
2. Theoretical modelling of metal-based and metal-free dye sensitizers for efficient dye-sensitized solar cells: A review;Solar Energy;2024-07
3. Optimized Machine learning techniques Enable prediction of organic dyes photophysical Properties: Absorption Wavelengths, emission Wavelengths, and quantum yields;Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy;2024-03
4. Application of machine learning‐based read‐across structure‐property relationship (RASPR) as a new tool for predictive modelling: Prediction of power conversion efficiency (PCE) for selected classes of organic dyes in dye‐sensitized solar cells (DSSCs);Molecular Informatics;2024-02-19
5. Insights into pharmacokinetic properties for exposure chemicals: predictive modelling of human plasma fraction unbound (fu) and hepatocyte intrinsic clearance (Clint) data using machine learning;Digital Discovery;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3