Application of machine learning‐based read‐across structure‐property relationship (RASPR) as a new tool for predictive modelling: Prediction of power conversion efficiency (PCE) for selected classes of organic dyes in dye‐sensitized solar cells (DSSCs)

Author:

Pore Souvik1,Banerjee Arkaprava1ORCID,Roy Kunal1ORCID

Affiliation:

1. Drug Theoretics and Chemoinformatics Laboratory Department of Pharmaceutical Technology Jadavpur University 188 Raja S C Mullick Road 700032 Kolkata India

Abstract

AbstractThe application of various in‐silico‐based approaches for the prediction of various properties of materials has been an effective alternative to experimental methods. Recently, the concepts of Quantitative structure‐property relationship (QSPR) and read‐across (RA) methods were merged to develop a new emerging chemoinformatic tool: read‐across structure‐property relationship (RASPR). The RASPR method can be applicable to both large and small datasets as it uses various similarity and error‐based measures. It has also been observed that RASPR models tend to have an increased external predictivity compared to the corresponding QSPR models. In this study, we have modeled the power conversion efficiency (PCE) of organic dyes used in dye‐sensitized solar cells (DSSCs) by using the quantitative RASPR (q‐RASPR) method. We have used relatively larger classes of organic dyes–Phenothiazines (n=207), Porphyrins (n=281), and Triphenylamines (n=229) for the modelling purpose. We have divided each of the datasets into training and test sets in 3 different combinations, and with the training sets we have developed three different QSPR models with structural and physicochemical descriptors and validated them with the corresponding test sets. These corresponding modeled descriptors were used to calculate the RASPR descriptors using a Java‐based tool RASAR Descriptor Calculator v2.0 (https://sites.google.com/jadavpuruniversity.in/dtc‐lab‐software/home), and then data fusion was performed by pooling the previously selected structural and physicochemical descriptors with the calculated RASPR descriptors. Further feature selection algorithm was employed to develop the final RASPR PLS models. Here, we also developed different machine learning (ML) models with the descriptors selected in the QSPR PLS and RASPR PLS models, and it was found that models with RASPR descriptors superseded in external predictivity the models with only structural and physicochemical descriptors: RMSEP reduced for phenothiazines from 1.16–1.25 to 1.07–1.18, for porphyrins from 1.60–1.79 to 1.45–1.53, for triphenylamines from 1.27–1.54 to 1.20–1.47.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3