Representing the potential-energy surface of protonated water clusters by high-dimensional neural network potentials

Author:

Kondati Natarajan Suresh1234ORCID,Morawietz Tobias1234,Behler Jörg1234

Affiliation:

1. Lehrstuhl für Theoretische Chemie

2. Ruhr-Universität Bochum

3. D-44780 Bochum

4. Germany

Abstract

We report a reactive neural network potential for protonated water clusters that accurately represents the density-functional theory potential-energy surface.

Funder

Studienstiftung des Deutschen Volkes

Deutsche Forschungsgemeinschaft

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Force training neural network potential energy surface models;International Journal of Chemical Kinetics;2024-09-06

2. Aqueous solution chemistry in silico and the role of data-driven approaches;Chemical Physics Reviews;2024-06-01

3. Mesomorphology of clathrate hydrates from molecular ordering;The Journal of Chemical Physics;2024-05-20

4. Perspective: Atomistic simulations of water and aqueous systems with machine learning potentials;The Journal of Chemical Physics;2024-05-01

5. Optimized multifidelity machine learning for quantum chemistry;Machine Learning: Science and Technology;2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3