Aqueous solution chemistry in silico and the role of data-driven approaches

Author:

Banerjee Debarshi12ORCID,Azizi Khatereh13ORCID,Egan Colin K.1ORCID,Donkor Edward Danquah12ORCID,Malosso Cesare2ORCID,Pino Solana Di4ORCID,Mirón Gonzalo Díaz1ORCID,Stella Martina1ORCID,Sormani Giulia1ORCID,Hozana Germaine Neza15ORCID,Monti Marta1,Morzan Uriel N.6ORCID,Rodriguez Alex17ORCID,Cassone Giuseppe8ORCID,Jelic Asja1ORCID,Scherlis Damian4ORCID,Hassanali Ali1ORCID

Affiliation:

1. International Centre for Theoretical Physics (ICTP) 1 , Strada Costiera 11, 34151 Trieste, Italy

2. Scuola Internazionale Superiore di Studi Avanzati (SISSA) 2 , via Bonomea 265, 34136 Trieste, Italy

3. School of Nano Science, Institute for Research in Fundamental Sciences (IPM) 3 , 19395-5531 Tehran, Iran

4. Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II Ciudad Universitaria 4 , 1428 Buenos Aires, Argentina

5. Dipartimento di Fisica, Universitá degli Studi di Trieste 5 , Via Alfonso Valerio 2, 34127 Trieste, Italy

6. Instituto de Fisica de Buenos Aires, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales Pabellón I Ciudad Universitaria 6 , 1428 Buenos Aires, Argentina

7. Dipartimento di Matematica e Geoscienze, Universitá degli Studi di Trieste 7 , via Alfonso Valerio 12/1, 34127 Trieste, Italy

8. Institute for Chemical-Physical Processes, National Research Council (IPCF-CNR) 8 , Via S. d'Alcontres 37, 98158 Messina, Italy

Abstract

The use of computer simulations to study the properties of aqueous systems is, today more than ever, an active area of research. In this context, during the last decade there has been a tremendous growth in the use of data-driven approaches to develop more accurate potentials for water as well as to characterize its complexity in chemical and biological contexts. We highlight the progress, giving a historical context, on the path to the development of many-body and reactive potentials to model aqueous chemistry, including the role of machine learning strategies. We focus specifically on conceptual and methodological challenges along the way in performing simulations that seek to tackle problems in modeling the chemistry of aqueous solutions. In conclusion, we summarize our perspectives on the use and integration of advanced data-science techniques to provide chemical insights into physical chemistry and how this will influence computer simulations of aqueous systems in the future.

Funder

European Commission

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3