High-pressure study of Li[Li1/3Ti5/3]O4 spinel
Author:
Affiliation:
1. Toyota Central Research & Development Laboratories
2. Inc.
3. Nagakute
4. Japan
5. Department of Materials Science
6. Graduate School of Engineering
7. Osaka Prefecture University
8. Sakai
Abstract
Crystal structures and electrochemical reactivities of high-pressure forms of the lithium titanium spinel Li[Li1/3Ti5/3]O4 (LTO) were investigated under a pressure of 12 GPa to elucidate its structural phase transition from spinel to post-spinel and to obtain a wide variety of electrode materials for lithium-ion batteries.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Japan Society for the Promotion of Science
Publisher
Royal Society of Chemistry (RSC)
Subject
Inorganic Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2018/QI/C8QI00371H
Reference51 articles.
1. Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4
2. Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells
3. Evidence of Two‐Phase Formation upon Lithium Insertion into the Li1.33Ti1.67 O 4 Spinel
4. A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery
5. Multi-Stage Structural Transformations in Zero-Strain Lithium Titanate Unveiled by in Situ X-ray Absorption Fingerprints
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Structural stability and ion migration of Li2MnO3 cathode material under high pressures;Chinese Physics B;2023-12-01
2. X-ray photoelectron spectroscopic investigation of atomic-layer-deposited spinel Li4Ti5O12: Calcination under reducing atmosphere;Thin Solid Films;2023-03
3. Facile and Low-Temperature Synthesis of γ-Fe2O3 Nanoparticles with Thermally Stable Ferrimagnetism for Use in Magnetic Recording Tapes;ACS Applied Nano Materials;2020-09-25
4. ϵ-FeOOH: A Novel Negative Electrode Material for Li- and Na-Ion Batteries;ACS Omega;2020-04-20
5. High-pressure synthesis of ε-FeOOH from β-FeOOH and its application to the water oxidation catalyst;RSC Advances;2020
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3