Structural stability and ion migration of Li2MnO3 cathode material under high pressures

Author:

Xie 谢 Ze-Ren 泽仁,Zhou 周 Si-Si 思思,He 贺 Bei-Bei 贝贝,Wang 王 Huan-Wen 欢文,Gong 公 Yan-Sheng 衍生,Jin 金 Jun 俊,Zhang 张 Xiang-Gong 祥功,Wang 汪 Rui 锐

Abstract

Some special fields, such as deep-sea exploration, require batteries and their electrode materials to withstand extremely high pressure. As the cathode material has the highest energy density, Li-excess Mn-based materials are also likely to be utilized in such an environment. However, the effect of pressure on the crystal structure and migration barrier of this kind of material is still not clear at present. Therefore, in this study, we investigate the properties of the matrix material of Li-excess Mn-based material, Li2MnO3, under high pressure. The equation of state, bulk modulus, and steady-state volume of Li2MnO3 are predicted by the method of first principles calculation. The calculations of unit cells at different pressures reveal that the cell parameters suffer anisotropic compression under high pressure. During compression, Li–O bond is more easily compressed than Mn–O bond. The results from the climbing image nudged elastic band (CINEB) method show that the energy barrier of Li+ migration in the lithium layer increases with pressure increasing. Our study can provide useful information for utilizing Li-excess Mn-based materials under high pressure.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3