Enantiomeric copper based anticancer agents promoting sequence-selective cleavage of G-quadruplex telomeric DNA and non-random cleavage of plasmid DNA

Author:

Parveen Sabiha1,Cowan J A2ORCID,Yu Zhen2ORCID,Arjmand Farukh1ORCID

Affiliation:

1. Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India. Tel: +91 0571 2703893

2. Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA

Abstract

Abstract Copper-based binuclear enantiomeric complexes 1S and 1R were synthesized as anticancer chemotherapeutic agents to target G-quadruplex rich region of DNA and thoroughly characterized by various spectroscopic and single X-ray crystal diffraction studies. The structure elucidation of Schiff base ligand LS and complexes 1S & 1R, was carried out by single crystal X-ray studies which showed that ligand crystallized in the monoclinic P21/n space group while complexes 1S and 1R crystallized in triclinic space groups P1̄ and P1, respectively with two copper units connected to each other via an alkoxide bridge to exhibit square planar geometry which is in good agreement with other spectroscopic studies {IR, ESI-MS, EPR and magnetic moment values}. In vitro binding studies of complexes 1S and 1R were carried out with G-quadruplex DNA and CT-DNA which showed higher binding affinity and selectivity toward quadruplex DNA over the duplex DNA. To validate the potential of complexes to act as therapeutic drug candidates, the cleavage studies of complexes 1S and 1R were carried out with G-quadruplex telomeric DNA by PAGE Gel assay which showed sequence selective cleavage of 22G4 via oxidative cleavage pathway. The major cleavage sites identified were G15, T6, G8, G9, G14 for complex 1S whereas for 1R G15, G20, G21, G14 cleavage sites were observed. Furthermore, these complexes were capable of cleaving pUC19 plasmid DNA in double-stranded non-random fashion which is considered to be more potent than single-strand cleavage as a source of lethal DNA lesions. Cellular studies of 1S and 1R were performed on a panel of human cancer cell lines; Huh7, MCF7, BxPC3 and AsPC1, which displayed significant cytotoxicity and differential responses toward different cancer phenotypes.

Funder

University Grants Commission

United States - India Educational Foundation

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3