Machine learning methods to predict the crystallization propensity of small organic molecules
Author:
Affiliation:
1. LAQV and REQUIMTE
2. Departamento de Química
3. Faculdade de Ciências e Tecnologia
4. Universidade Nova de Lisboa
5. Caparica
Abstract
Machine learning algorithms were explored for the prediction of the crystallization propensity based on molecular descriptors and fingerprints generated from 2D chemical structures and 3D chemical structures optimized with empirical methods.
Funder
Fundação para a Ciência e a Tecnologia
Publisher
Royal Society of Chemistry (RSC)
Subject
Condensed Matter Physics,General Materials Science,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2020/CE/D0CE00070A
Reference30 articles.
1. Will it crystallise? Predicting crystallinity of molecular materials
2. Predicting the Crystallization Propensity of Drug-Like Molecules
3. Revisiting the Optimal Nano‐Morphology: Towards Amorphous Organic Photovoltaics
4. Crystallization Tendency of Active Pharmaceutical Ingredients Following Rapid Solvent Evaporation—Classification and Comparison with Crystallization Tendency from Under cooled Melts
5. Long-Term Amorphous Drug Stability Predictions Using Easily Calculated, Predicted, and Measured Parameters
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Nucleation Patterns of Polymer Crystals Analyzed by Machine Learning Models;Macromolecules;2024-07-23
2. Artificial Intelligence Assisted Pharmaceutical Crystallization;Crystal Growth & Design;2024-05-03
3. Review of computer‐aided methods in fat crystallization studies;Journal of the American Oil Chemists' Society;2024-01-30
4. Machine-Learning-Enabled Framework in Engineering Plastics Discovery: A Case Study of Designing Polyimides with Desired Glass-Transition Temperature;ACS Applied Materials & Interfaces;2023-07-25
5. Application of gas chromatographic data and 2D molecular descriptors for accurate global mobility potential prediction;Environmental Pollution;2023-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3