Strain engineering of metal-based nanomaterials for energy electrocatalysis
Author:
Affiliation:
1. Department of Materials Science & Engineering, College of Engineering, Peking University
2. Beijing 100871
3. China
4. BIC-ESAT, College of Engineering, Peking University
Abstract
This work presents recent advances in strain engineering via the core–shell structure, solid solution alloy and multiple defects-induced structure.
Funder
National Natural Science Foundation of China
Beijing Municipal Natural Science Foundation
National Basic Research Program of China
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2019/CS/C8CS00846A
Reference57 articles.
1. Understanding Strain and Ligand Effects in Hydrogen Evolution over Pd(111) Surfaces
2. Effect of Strain on the Reactivity of Metal Surfaces
3. Atomic Ensemble and Electronic Effects in Ag-Rich AgPd Nanoalloy Catalysts for Oxygen Reduction in Alkaline Media
4. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts
5. Surface Strain versus Substrate Interaction in Heteroepitaxial Metal Layers: Pt on Ru(0001)
Cited by 459 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Strain engineering of PtMn alloy enclosed by high-indexed facets boost ethanol electrooxidation;Journal of Colloid and Interface Science;2025-01
2. Simple construction of efficient graphite supported NiCoCu functional catalysts for methanol oxidation reaction using mechanical milling;Fuel;2024-12
3. Electronic Structure Regulated Carbon‐Based Single‐Atom Catalysts for Highly Efficient and Stable Electrocatalysis;Small;2024-09-10
4. Tensile‐Strained Cu Penetration Electrode Boosts Asymmetric C−C Coupling for Ampere‐Level CO2‐to‐C2+ Reduction in Acid;Angewandte Chemie;2024-09-06
5. Tensile‐Strained Cu Penetration Electrode Boosts Asymmetric C−C Coupling for Ampere‐Level CO2‐to‐C2+ Reduction in Acid;Angewandte Chemie International Edition;2024-09-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3